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Outline

 Motivation and Detector Initial Requirements. 

 Detector Principle / Fundamental Design.

 X-ray Active Matrix Pixel Sensor (XAMPS).

 Device fabrication.

 Tests results. 

 Future development.
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Linac Coherent Light Source (LCLS)

 LCLS is a X-ray free-electron laser being built at 
Stanford (2009).

 Photons energy 800 eV – 8 keV.
 Pulses ~ 100 fs at 120 Hz.

Motivation: having a source with atomic-scale time and 
wavelength (and enough photons to “take dynamic 
pictures of materials” in one shot).

http://www-ssrl.slac.stanford.edu/lcls/
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X-ray Pump Probe Instrument

Figure courtesy of the Centre for Molecular Movies, established by the Danish National Research Foundation.

Ultrafast optical laser pulse 

 Ultrafast optical laser pulse: to excite changes in 
atoms positions

 LCLS X-ray pulses: to study diffraction from the 
excited sample

 Detector: to study X-ray scattering pattern or X-ray 
absorption and emission

LCLS x-ray pulse 

Detector 

Sample

http://photonscience.slac.stanford.edu/lusi/instruments/xpp.php

http://photonscience.slac.stanford.edu/lusi/instruments/xpp.php
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Fast readout imaging detector

 Integrating detector because of the nature of 
the experiment.

 Single photon sensitivity.
 Large dynamic range:  104 photons full-well.
 Low noise: better than 1 photon.
 Readout time better than 8 ms.
 1024 x1024 pixels.
 Photon energy: 8 keV.
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XAMPS: simplest structure

 Monolithic devices built on fully-depleted high-
resistivity silicon.

 Highly efficient with 100% fill factor.
 Switching mechanism integrated with sensor.
 Row-by-row parallel readout by off-sensor amplifiers 

(N readout channels instead of N x N, modular 
readout from edge of detector by a few ~16 small 
ASICs).

 Small pixels in principle possible (no on-pixel amps or 
small 3T design).

W. Chen et  al. IEEE Trans. Nucl. Sci. 49 (3) (2002) 1006.

W. Chen et  al.  Nucl. Instr. Meth. A 512 (2003) 368.

G. A. Carini  et  al. IEEE Nuclear Science Symposium, Conference Record Oct. 26 2007- Nov. 3 2007 (2) 1603.
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Active matrix

• Charge stored in diode 
capacitance

• Switches sequentially on, row 
by row

• Readout amplifiers in each 
column

• Charge readout and digitized

• Column to ADC multiplexing 
(each ADC readout 16 columns 
multiplexed)

~1 µs per row, ~1 ms for 1000 
rows

Amplifiers/Multiplexers

readout lines

control
lines
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Resolution (8 keV):            0.5 photons (FWHM)  500 e- rms
Dynamic range :                 104 photons                2.2 × 107 e- (3.5 pC)
Pixel + line capacitance :   2-20 pF including the line (depend on the capacitive gate control) [15pF]
Processing time :           < 8 µs (1 µs-8 µs to be synchronized with the beam period of 120Hz)

Front-end ASIC

– 64 front-end channels

– low-noise charge 
amplifier

– optimized time-variant 
filter

– Charge Pump

– dual Correlated Double 
Samplers

– 4 dual 16:1 multiplexers

– 4 Output buffers

– 20 MHz readout

– LVDS interface

– total 16 ASICs

XAMPS array

1024 X 1024

64 16 times

FEXAMPS ASIC 

14 bit ADC

16 times

LVDS

Capacitive
gates control

1024

FPGA based 
control system

1024

Transfer
gates control

System architecture
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Cpixel
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Cline

t = 0

s = 220ns

w
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 i(t)

Cf

Qp
Vref

Pump

Control Logic
+ N Counter

S/H

Qp = Qmax/N

Cf = Qp/DRout

Working principle:

To meet the required resolution over the entire dynamic range a 0 balance method is applied: the dynamic range is divided 
in N ranges each one corresponding to a charge Qp=Qmax/N. When a charge larger than Qp is presented to the input a 
charge pump is activated to remove fixed amount of charge equal to Qp until a residual smaller than Qp remains stored in 
the feedback capacitor Cf. The number of charge quanta Qp removed by the pump are counted and the corresponding 
digital value is presented at the output representing the most significant bits of the final A/D conversion (for N=8 we have 3 
bit).
The residual charge in the feedback capacitor is then sampled according to a CDS scheme, presented at the output and 
converted with a 14bit ADC (total of 14+3=17bit).

Charge pump or 0 balance method
Problem is to handle both large signals and small signals while  maintaining low noise for small signals. Circuit works by 'pumping' 
large charge packets out of integrator summing node until amplifier falls into linear operation, then digitizing remainder.
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Final layout and chip size
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Die cut
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Preliminary results.
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A. Dragone et al.  (to be presented at IEEE Nuclear Science Symposium, 2008).
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Sensors

 512x512 pixels matrices tiled in 2x2 array: 
• in house fabrication
• J-FET technology
• 100 mm wafers
• 400 µm thickness
• 90 µm x 90 µm pixel size

Amplifiers/Multiplexers

Amplifiers/Multiplexers
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3D plot of a pixel
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Fabrication

 Brookhaven's Instrumentation Division: 
Semiconductor Detector Development and 
Processing Lab (SDDPL).

• 600 sq. ft. class-100 cleanroom 
• J-FET technology available on 100 and 150 mm wafers
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Masks’ Layout

256x256 pixels 512x512 pixels

128x128 pixels

64x64 pixels
32x32 pixels

16x16 pixels, 8x8 pixels, 4x4 pixels, 2x2 pixels, and other test 
structures are designed.
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12 Masks (16 mask steps)

second aluminum contact on N-sideAluminum on Top on N-sideALTN

make polyimide insulation layer on N-sidePOLyimide on N-sidePOLN

aluminum contact on P-sideALUminum on P-sideALUP

first layer of aluminum contact on N-sideALUminum on N-sideALUN

oxide step cut to silicon on P-sideNITride cut on P-sideNITP

oxide step cut to silicon for both n and p region on N-sideNITride cut on N-sideNITN

mask protecting rest area from deep n implant on N-sideN DeeP implant on N-sideNDPN

mask protecting rest area from deep p implant on N-sideP DeeP implant on N-sidePDPN

mask protecting p-region from n implantation on N-sideP be CoVered on N-sidePCVN

mask protecting n-region from p implantation on N-sideN be CoVered on N-sideNCVN

open oxide for p implantation on P-sideP, IMplant on P-sidePIMP

open oxide for p and n implantations on N-sideP, N Implant on N-sidePNIN

FunctionFull Description
Mask 

Symbol

Detector processing steps
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Final Wafers 

Device side Window side
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Some details 

90 µm x 90 µm pixel size

matrix 8x8 matrix 2x2 test transistor
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Sensor details

Detail of a pixel: storage capacitor, gate and drain of the ring J-FET are visible with 
the pixels separator in the first metal. The second metal layer show part of a 
readout line (vertical line), switching line (two horizontal lines connected through 
vias to the gate), and planes connecting the capacitors where the charges are 
stored. The metal interlayer is a polyimide film. 

Pictures courtesy of Anand Kandasamy
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I-V measurements

~300 pA
for 1024 pixels

~300 fA 
per pixel

Dark current: 3.5 pA/cm2

Room Temperature operation!
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Transistor characteristics
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DAQ-1

ASIC

32 channel ASIC*  front-end: low-noise charge preamplifier, shaper 
with stabilized baseline, discriminator and peak detector with an 
analog memory per channel. Readout sparsified.

*De Geronimo et al., Nuclear Science Symposium Conference Record, 2007. NSS '07. IEEE

Volume 3,  Oct. 26 2007-Nov. 3 2007 Page(s):2411 - 2415
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Setup

X12A – 8 keV
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Quick Image

500um

a) Detail of the lead mask. b) X-ray transmission image at 8 keV with a beam size 
of ~ 1 mm x 3 mm (VxH) and 8 ms integration time (left: raw data; right: 
background subtraction).

a) b)

ColumnsColumns

R
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s

R
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Raster scans

Scan performed with a monochromatic beam of 8 keV, 30 x 30 m2 

beam size and with 10 m step.
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Contours - Scans

2 adjacent pixels: scan performed in a 300 x 300 m2 area with a monochromatic 
beam of 8 keV, 30 x 30 m2 beam size, 10 m step and 8 ms integration time.
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1D-Scans

Scan across 2 pixels with a monochromatic beam of 8 keV, 30 x 30
m2  beam size and with 10 m step.
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X-ray tube setup – 2D map
Cu k-alpha

Measurements performed with X-ray generator at 20 KV and 5 
mA, with a 25 μm slit. The data is double correlated background 
subtracted with exponential filter, ADC 2V / 4096, Amp gain = ~ 
0.3 mV/fC.
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Linearity – Full well

Number of photons as function of the integration time for a pixel at the 
Cu k-alpha.
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Let's give it a try!

X6A
Beam energy = 12.2keV
Beam size @ sample = 200µm x 200µm
Sample: Thaumatin
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X6A - Thaumatin

Rotation 0.5° / s – Integration 32 ms / frame
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X6A - Thaumatin

Rotation 0.5° / s – Integration 32 ms / frame
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X6A - Thaumatin

Rotation 0.5° / s – Integration 32 ms / frame
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X6A - Thaumatin

Rotation 0.5° / s – Integration 32 ms / frame
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Summary

 Fabrication processing established.

 Preliminary results: promising.

 Tests: constraints dictated by available readout systems.

 ASIC is currently being tested.
 Tiling under development.
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Thank you!
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Backups
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Pixel simulations: 3D cross sections

Results from SILVACO - ATLAS simulations. 3D view of a pixel section. 
This structure, showing the net doping (left) and built-in potentials (right).
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p+ (gate)

n+ (ch)
p+ (barrier)

G SDGSG S D GS BB

Implants in device side
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VDrain=0V, VSource=0V, VCh_bar=-3V, VBackside=-200V

VGate=0.5V
OPEN

VGate=0V VGate=-2V
CLOSE

G SDGS G SDGS G SDGSB B B

Electron concentration


